
An Infrastructure for the Design and
Development of

Open Interaction Systems

Daniel Okouya1, Nicoletta Fornara1, and Marco Colombetti1,2

1 Università della Svizzera Italiana,
via G. Buffi 13, 6900 Lugano, Swizterland

{daniel.okouya,nicoletta.fornara,marco.colombetti}@usi.ch
2 Politecnico di Milano,

piazza Leonardo da Vinci 32, 20135 Milano, Italy
marco.colombetti@polimi.it

Abstract. We propose an infrastructure for the design and development
of Open Interaction Systems (OISs), based on solutions from the areas
of Service Oriented Architecture, Semantic Technologies and Normative
Multiagent Systems, in particular the OCeAN metamodel of Artificial
Institution. OISs are open to diverse types of participants (i.e., software
agents), and enable them to interact with each other to achieve their ob-
jectives. To do so the participants are allowed to interact in compliance
with previously agreed-upon regulations provided by the system and on
the basis of the semantics of the communicative acts performed, both
of which are enforced by the system. The infrastructure we propose in-
volves four layers: (i) the Messaging Layer, which enables observable ACL
message exchanges between heterogeneous participants while respecting
ownership boundaries; (ii) the Core Service Layer, which enables the
participants with performing observable non-communicative actions rel-
evant to the ongoing application (iii) the Bridging Layer, in charge of
interpreting the participants’ actions in a form suitable for regulation;
and (iv) the Regulation Layer, which holds the regulations and enforces
them with respect to the participants’ activities.

Keywords: Open Interaction Systems, Artificial Institution, Ontologies,
Normative Systems, Agent Communication

1 Introduction

Open Interaction Systems (OISs) are distributed systems which diverse types
of participants (i.e., software agents) can freely join with the goal of interacting
with each other to achieve their objectives. To do so the participants are allowed
to interact by exchanging messages with rigorously defined syntax and semantics,
in compliance with previously agreed-upon norms provided by the system; both
the norms and the communication language are enforced by the system.

128



In our past work we have proposed the OCeAN metamodel [12] for the spec-
ification of OISs. In this paper we describe an infrastructure, currently under
development, for the actual implementation of such systems. In designing this
infrastructure we aim at guaranteeing openness and interoperability, while keep-
ing as close as possible to those technologies that are sufficiently mature and
stable, and are already adopted by a large industrial community. Among such
technologies we include standard Service Oriented technologies [4] and Semantic
Web technologies [14].

The infrastructure we propose involves four layers: (i) the Messaging Layer,
which enables heterogeneous participants to interact with each other through
communicative actions while respecting ownership boundaries; (ii) the Core Ser-
vice Layer, which allows the participants to exploit the support services offered
by the OIS to perform non-communicative actions; (iii) the Bridging Layer, in
charge of interpreting the participants’ actions in a form suitable for regulation;
and (iv), the Regulation Layer, which holds the norms regulating the interactions
and enforces them relative to the participants’ actions. More specifically:

– the Messaging Layer provides a messaging protocol based on standard tech-
nologies (HTTP, SOAP, WSDL) and uses Web Service technologies for the
transfer of messages between participants, by prescribing the use of a specific
message transfer service exposed via WSDL; messages realize communicative
or institutional acts and comply with OCeAN-ACL [10], an Agent Commu-
nication Language strongly based on Semantic Web technologies, and on
OWL 2 DL in particular;

– the Core Service Layer makes certain complementary services available to
the participants (e.g., an OIS realizing an e-marketplace may offer services
related to payment, product delivery, and so on) to perform observable non-
communicative actions relevant to the ongoing application;

– the Bridging Layer interprets the participants’ communicative and non-
communicative actions in a form suitable for regulation. Coherently with
the OCeAN metamodel, such acts either result into commitments (like in
the case of acts of informing, requesting, etc.) or are regarded as attempts
to perform institutional actions relying on suitable count-as rules;

– finally, the Regulation Layer realizes a normative context (again according
to the OCeAN metamodel), that is, a set of artificial institutions specifying
the institutional actions that can be performed and the set of norms that
have to be followed.

In this paper we provide a detailed specification of all layers and describe the
implementation, currently under development, of an infrastructure oriented to
the implementation of an open e-marketplace. The paper is organized as follows.
In Section 2 we describe the functionalities pertaining to the Messaging Layer
and how we implement them by exploiting standard Web Service technology.
In Section 3 we briefly sketch how the core services offered by the OIS can
be actually realized, considering an e-marketplaces as an example. In Section 4
we describe the functionalities pertaining to the Regulation Layer and how we
implement them by exploiting Semantic Web technologies, and OWL ontologies

129



in particular. In Section 5 we explain how relevant events taking place at either
the Massaging or the Core Service Layer are made available to the Regulation
Layer. In Section 6 we review some related works. Finally in Section 7 we draw
some conclusions and briefly describe our plans for future work.

2 The Messaging Layer

In an OIS, a large part of the participants’ interaction is carried out through the
exchange of suitable messages. Therefore the bottom layer of our infrastructure
provides the means to enable heterogeneous participants to interact with each
other by exchanging messages in a fully interoperable fashion. In addition, it
does so in such a way that it ensures the observability of these interactions, to
the purpose of regulation.

To this end our infrastructure integrates principles from Service Oriented Ar-
chitecture (SOA) and from Multiagent Systems (MAS). First, a message trans-
fer approach is prescribed that is neutral to the internals of the participants,
and leverages standard technologies to facilitate widespread adoption. This is in
contrast with approaches based on some of the most well known ready-to-use
messaging technologies like JMS3, RMI4, and CORBA [17], which bind either
to a particular programing language [13] or to a programing language paradigm
[17]. Such approaches do not fully decouple the end point implementation from
the messages, thus limiting interoperability [18, 2]. Our architecture, following
SOA’s principles of loose coupling, solely prescribes a message format together
with its transfer protocol, both of them strictly decoupled from the end point
implementation, while insisting as much as possible on the adoption of standard
technologies [5, 4, 21].

Next, we add to the architectural prescriptions, the combination of the SOA
concept of a message, as comprised of carrying and content information, with the
MAS idea of a powerful and flexible Agent Communication Language (ACL).
More precisely, we take the content part of a SOA message to represent the var-
ious components of a suitably designed ACL. Thus, together with the neutral
messaging protocol delineated above, the participants are enabled to interact
through the performance of communicative acts, in a totally interoperable fash-
ion.

Finally, to enable the observability of the communicative acts performed by
the participants to the purpose of regulation, this layer further mandates a Com-
munication Channel (CC) to mediate message exchanges between participants.
More precisely, to communicate with other registered participants, a registered
participant shall send its messages to the address of the CC, with the name of
the desired participants as the recipients. The CC receives the message which,
if approved by the regulative process of the infrastructure, is then delivered to
the intended participants. If the message is not approved, the CC rejects it and
sends a suitable explanation to the sender.

3 http://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html
4 http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/index.html

130



These architectural requirements are met in the infrastructure as follows.
In the first place, the infrastructure provides for a messaging protocol based
on standard neutral technologies: HTTP, SOAP5, and WSDL6. In other words,
Web Service technology is adopted for message transfer between participants,
by specifying a message transfer service, exposed via WSDL, in which HTTP is
used for the transport of messages and SOAP for their structure. Our choice is
motivated by the fact that this technology represents a standard approach for
making available over the network functionalities that are triggered or delivered
by exchanging messages.

In the second place, the infrastructure then specifies the body of the SOAP
messages as messages of our ACL7. From the syntactic point of view, the ACL
we propose is very close to KQML8 and FIPA ACL9, from which however it
substantially departs as far as semantics is concerned (see Section 5). As with
FIPA standards, our ACL come with a separate Content Language (CL). Our
CL is defined as an OWL Ontology, the Content Language Ontology [10]. It plays
a role similar to FIPA-RDF.

Thus, realizing the first two requirements, we define a WSDL file with only
one service, which is the delivery of an ACL message, carried in the body of a
SOAP message. The WSDL contract represents any form of message that can be
exchanged between entities of our OIS, with the requirement that the massage
contains the address to reply to according to the same contract. Communication
between participants is only allowed through the use of this service; consequently,
all participants are required to be equipped with a suitable communication mod-
ule, composed of: (i), a listening-point, that is, a web-service provider exposing
a message delivery service defined according to our WSDL contract; and (ii), a
talking-point, that is, a web-service client that requests the delivery of a message
in conformance with that contract [9].

A crucial advantage of this approach is the provision of a messaging protocol
in the form of a WSDL contract, which is both human readable and machine
processable. Such a contract can be easily handled with the support of runtime
frameworks coming along with Web Service technology, such as Apache CXF
[1, 15]. We use CXF to automatically generate the core of the communication
module of the participating component of our infrastructure; hence anyone can
easily generate the necessary facilities to handle the transmission of messages
abiding to the exposed messaging protocol and adapt it to their need, in order
to participate in the OIS.

Finally, to deal with message transfer the infrastructure provides an imple-
mentation of the CC as a Java component, developed with CXF as exposed
above.

5 http://www.w3.org/TR/soap
6 http://www.w3.org/TR/wsdl
7 http://www.people.lu.unisi.ch/okouyad/AclOverSoapHttpMP.wsdl
8 http://www.csee.umbc.edu/csee/research/kqml/
9 http://www.fipa.org/repository/aclspecs.html

131



3 The Core Service Layer

As we have already remarked, in OISs, a large part of the participants’ inter-
action is carried out by exchanging suitable messages; under the circumstances
of our Infrastructure, as a result of its messaging layer, it can be further stated
that it is mainly by performing communicative acts, that is, by exchanging ACL
messages. However, most types of applications will also require the executions of
actions that are not strictly speaking communicative. We identify these actions
as non-communicative acts and classify them into two categories. First, non-
communicative acts that concern the interaction between the participants and
certain components of the infrastructure, designed to provide support to the par-
ticipants’ activities; as we shall see, these non-communicative acts are typically
application-independent. Second, non-communicative acts occurring between the
participants that concern certain application-specific interactions.

More specifically, on the one hand, some of the application-independent non-
communicative actions are intended to support the enforcement of ownership-
boundaries between participants, enabling them to connect with each other with-
out introducing dependencies. To this purpose, the infrastructure provides for a
Registry component, within which the participants can be listed or unlisted by
performing actions such as registering or deregistering their identities. Although
the registration and deregistration processes do presuppose the performance of
certain communicative actions (more precisely, of the request to be registered
or deregistered), the actions of registering or deregistering a participant are not
themselves communicative. Rather, they are non-communicative actions made
available to the participants by the infrastructure, through the provision of ser-
vices that may be invoked using communicative actions (requests).

On the other hand, some of the application-specific activities, that is, some
of the activities that are carried out between the participants, may also require
more than the sole performance of communicative actions. That is, the nature
of the interactions may demand the performance of application-specific non-
communicative actions, which, as in the case of communicative acts (i.e., the
other actions occurring between the participants), must also be made observable
to the infrastructure. For example, in an e-marketplace system, when engaging
in a purchasing activity, after settling a contract with communicative acts, the
buyer may be required to carry out a payment, while the seller may be required
to deliver a product. These are both non-communicative acts inherent to the
purchasing activity, and as such must also be visible to the infrastructure.

Thus, the objective of this Layer is to equip the infrastructure so that: (i),
it enables the participants with performing all the infrastructure-specific non-
communicative actions belonging to the direct interactions between the partici-
pants and the infrastructure itself; and (ii), it can observe the performance of the
application-specific non-communicative actions inherent to some of the activities
occurring between the participants.

To this end, first, as suggested above, for those non-communicative actions
that are application-independant (i.e., infrastructure-specific) at present our in-
frastructure provides a Registry component, implemented in Java, to serve as a

132



White Pages Service. It provides among others, for the registering and deregis-
tering actions. As this component is endowed with ACL-processing capabilities,
participants can request its services using ACL messages.

Next, for the non-communicative actions that are application-specific, in
unison with the approach used for the communicative acts (i.e., that the ob-
servation of the actions occurring between the participants goes through the
mediation of their performance), the infrastructure also proposes to mediate
them. In this respect, however, the core service layer proceeds differently from
the messaging layer. Indeed, the different communicative actions that can be
performed by the participants are the same across applications; thus, the ob-
servation process necessary to handle them is also application-independent, and
therefore can be achieved by a generic component: the Communication Channel.
In contrast, non-communicative acts occurring between participants are typically
application-dependent: their presence, what they achieve, and how they achieve
it, always depend on the application being realized. Indeed, on one hand, un-
like communicative acts that ought to be always available to the participants,
the presence of those non-communicative actions is application-specific; for in-
stance, the availability of a delivery action would be irrelevant to an application
that does not deal with delivery, such as an e-market for computational services.
On the other hand, when present, the performance of those non-communicative
acts can substantially vary depending on the requirements of the applications
in which they are performed: as illustrated by the case of a payment, while one
application may require a system like PayPal, another one may require a direct
bank-to-bank transfer or a cheque payment, which would require to go through
different steps and to supply different information. Another important difference
is that, unlike communicative actions, non-communicative actions can also vary
in nature, that is, they can be electronic, physical or involve both aspects.

Hence, to mediate them, the infrastructure must proceed carefully taking into
account their fundamental application-oriented characteristics, as well as their
nature that can involve any combination of physical and electronic aspects. To
achieve this, the architecture prescribes that the Core Service Layer provides
for the incorporation of observable application-specific components, offering to
the participants specific services of mediation for those application-specific, non-
communicative actions. These components must be such that they seemingly
interoperate with the participants for the invocation of the actions that they
mediate, whose performances must be observable.

To that purpose, on the one hand, this layer specifies the interfaces of the me-
diating components, so that the relevant parts of the infrastructure can take into
account the performance of the non-communicative actions they are in charge of.
On the other hand, it prescribes the characteristics that the components must
posses so that their services can be seemingly consumed. In support of that
latter point, the layer mandates the use of communicative acts to invoke their
mediation services. That is, while the message-transfer mediation service of the
messaging Layer is invoked using a SOAP message (as a typical web-service),
theses services are invoked using an ACL message, that is, the content of the

133



soap message. It brings the advantage of providing a unique flexible protocol for
the invocation of these services, independently of their nature and level of com-
plexity. This implies that those mediating components must be able to process
certain ACL messages.

Meanwhile, it is important to mention that as part of the service they pro-
vide, our infrastructure does not require that mediating components directly
perform the non-communicative actions they supply: indeed they may do so, or
guarantee their performance by some external systems, or simply acknowledge
their external realization as informed by a set participants who have agreed to
use an external service for their interaction. In this regard, the layer classifies
theses services into two distinct categories: internal services and external ser-
vices. In the former case, the service is internally managed by the component
itself; this means that when directly asked by a participant, the component takes
charge of the execution of the activities involved in the service. In the latter case,
which represent a very decentralized approach providing more freedom to the
participants, the execution is guaranteed by the participants themselves, which
then inform the infrastructure of the results. Here mediation plays the role of a
neutral authority that acknowledges the realization of services taking place out
of its direct control, according to the specific rules governing the application.

4 The Regulation Layer

Once heterogeneous participants, possibly belonging to different owners, can
interact with each other as exposed above, it is necessary that they get pro-
vided with some form of harnessing framework defining norms that regulate
their interactions. This is particularly important as it allows the participants
to have reasonable expectations with respect to the interactions they engage
in order to achieve their objectives. Moreover given that we target systems as
e-marketplaces, taking in account the sensitive nature of their activities, the ar-
chitecture prescribes the realization of a neutral third-party component in charge
of analyzing the participants’ interactions (by using the information received by
the Bridging Layer as described in Section 5), with the aim of monitoring the
evolution of the state of the interaction and specifying and enforcing the norms
of the regulating context.

In order to realize all these functionalities we introduce in the proposed ar-
chitecture the Regulation Layer. It is based on the OCeAN meta-model [11],
in which regulating contexts are defined as artificial institutions that provide a
high-level representation of a specific set of institutional actions together with
the norms that govern them, and of the institutional objects that need to be
observed to monitor the evolution of the state of the interactions. For every spe-
cific application, such institutions are operationalized by grounding them in the
current domain [12, 7].

The Regulation Layer must possess a formal representation of the state of
the interaction suitable to carry out automatic reasoning. In particular this rep-
resentation has to include specifications of: (i), the regulating context in force;

134



(ii), the types of events and actions the application is dealing with; (iii), the
application-dependent and application-independent knowledge defining the rel-
evant objects and their states during the interaction; and (iv), the instances of
the institutional actions and events that happen in the system. Reasoning will
then allow the system to monitor the evolution of the state of the interaction,
detecting in particular norms fulfillment and violation.

Our infrastructure meets these requirements in the following way. We define
our regulating context as an OCeAN artificial institution. The first regulating
context we have operationalized so far is the Commitment Institution, which
regulates agent interactions in terms of the commitments they make to each
other by the performance of communicative acts [6, 7]. This is an application-
independent foundational institution, used in the definition of more specific
application-dependent institutions (like for example the institutions formalizing
different types of auctions). This Commitment Institution specifies commitments
as institutional objects, together with their life-cycle rules and the institutional
actions that allow an agent to create, cancel, or otherwise manipulate them. This
enables us to monitor the state of an interaction in term of the evolution of the
commitments that the participants make to each other. Application-dependent
regulating contexts (like for example those relevant to e-commerce) are also rep-
resented as OCeAN institutions.

In our infrastructure, institutions as well as domain knowledge (e.g., knowl-
edge about the products that are exchanged in the e-market) are represented
as ontologies specified in OWL 2 DL [14], the standard language for defining
ontologies in the Semantic Web. Also the state of an interaction is represented
in an OWL ontology, that we call the Interaction Ontology, which is continually
updated while the interaction proceeds (see Section 5). More precisely the Inter-
action Ontology contains a representation of the institutional objects defined by
the institutions in force, along with when required, the institutional actions that
create and manipulate them, altogether with the basic actions and objects the
institution may operate with. To serve this purpose, the Interaction Ontology
imports:

– an OWL upper ontology specifying common application-independent con-
cepts like the notion of agent, action, event, and object;

– the SWRL Temporal Ontology10 for representing instants and intervals of
time;

– the OWL ontologies used for representing the relevant artificial institutions
e.g. the Commitment Institution Ontology11;

– the Domain Ontology used for representing relevant domain knowledge.

Some of these ontologies are described in details in [10]. The ontology imports
are realized according to an architecture [10] that we have crafted specifically to
avoid conflicts and duplications of those application-independent concepts (like
agent, action, temporal interval, etc.) on which several ontologies overlap.

10 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTemporalOntology
11 http://www.people.lu.unisi.ch/okouyad/CommitmentOntology.owl

135



Using OWL 2 DL reasoning, our representation makes it possible to monitor
the state of the interactions according to the rules of the context. Thus, equipped
with it, in compliance with the prescriptions of the architecture which require
a neutral third-party component to enact this functionality, our infrastructure
provides for a regulation component which plays the role of interaction manager,
in charge of monitoring regulations and requesting their enforcement when nec-
essary. To this purpose, the regulation component relies on the Pellet OWL 2
reasoner12 that it uses in conjunction with the OWL-API13: every time a rele-
vant event happens (such as the elapsing of a pertinent instant of time, or the
realization of an institutional or non-institutional action or events), a suitable
assertion is added to the ABox of the Interaction Ontology and the reasoning
process is triggered.

Implementing such a task by OWL 2 DL reasoning is not straightforward.
First, as participants interactions have to be monitored over time, it is necessary
to carry out some kind of temporal reasoning. For instance, if a participant
has a commitment towards another to realize a given action before a deadline,
in order to deduce that the after the deadline the commitment is fulfilled or
violated it is necessary to deduce that the deadline has elapsed. This cannot be
specified by OWL axioms alone; therefore, SWRL14 rules containing temporal
built-ins have been added to perform suitable temporal inferences. Such rules
exploit the Time Ontology developed by the Protege group [16], which provides
a time representation format that is suitable for calculation, is aligned with the
current XSD standards, and defines a rich set of temporal builts-ins that can
be used to extend our OWL ontologies with SWRL rules. However, given that
these built-ins are not SWRL standards, they are not natively supported by
reasoning engines; as the Protege group has provided an implementation for
reasoning with these built-ins only with the Jess rule engine, we have developed
our implementation for extending the reasoning capabilities of Pellet reasoner
by using the Pellet custom built-ins definition mechanism.

Representing the evolution of the state of interactions (including for example
the new commitments that the participants bring about) by means of a con-
tinuous update of the Interaction Ontology at run-time [8], is a delicate task
because it may introduce inconsistencies. More specificaly, in our formalization
of the Commitment Institution ontology11 presented in [6], in which we refer
to it as the Obligation ontology, we specify that an action-commitment (i.e., a
commitment to perform an action, namely, an obligation), has an associated
temporal interval, within which the action must be executed. Determining this
interval can involve several steps depending on the properties inherited by the
the commitment at its creation. In certain situations such as when the action-
commitment is conditional, it only becomes activated if a specific triggering
event or action takes place; when this activation occurs, the beginning and the
end instant of time of the interval associated to the action-commitment have

12 http://clarkparsia.com/pellet/
13 http://owlapi.sourceforge.net/
14 http://www.w3.org/Submission/SWRL/

136



to be set. For example, if the exchange of a message commits a participant to
deliver a product within two days, on condition that the receiver of the product
performs a payment, then the action-commitment will be created as soon as the
message is exchanged, but will only be activated when the payment takes place.
At activation time the interval will be determined as follows: (i), its beginning is
set at the time instant of the activation; and (ii), its end is set at the beginning
plus two days. All this can be expressed by a suitable SWRL rule. However,
if several actions belonging to the activation class of the obligation take place,
the SWRL rule will be activated several times and the interval of the obliga-
tion will be represented incorrectly. This problem cannot be solved inside the
OWL ontology, even by the use of additional SWRL rules; therefore we regulate
the activation of the relevant SWRL rule with an external Java program that
using the OWL-API, checks that an interval that is already set is not further
changed. In short, some reasoning and calculations have to be made outside of
the reasoner, in order to properly manage the Interaction Ontology.

5 The Bridging Layer

To regulate interactions it is necessary to capture the participants’ actions and
other relevant events that take place in the system, and to represent them in a
form that suits the abstraction level at which regulation operates. This is the
purpose of the Bridging Layer. For this, it prescribes a bridging component which
equipped with the definition of the institutions in force that are shared with the
regulation component, operates as detailed in the following.

First, all events (inclusive of the participants’ actions) that are relevant for
regulation must be observed by the Bridging component. These events take place
either at the Messaging Layer or at the Core Service Layer. As far as the former is
concerned, the relevant events consist in exchanges of ACL messages, which are
made available for observation by the CC (Communication Channel) component
of the Messaging Layer. To the purpose of regulation, it is therefore crucial that
all message exchanges between participants take place through the CC provided
by the infrastructure. As we have already remarked, however, message exchanges
are not the only events that need regulation. Among these also certain non-
communicative events are included, like for example the actions of payment or
delivery of products. These events are made available by the Core Service Layer.

Subsequently, the observed events have to be represented in a form that is
suitable for regulation. In particular, given that the Regulation Layer relies on
artificial institutions, representing an observed concrete event in a form suitable
for regulation involves producing a representation that is compatible with the
specification of the artificial institution.

In the OCeAN metamodel, artificial institutions deal with two types of
events, that we respectively call basic and institutional events. An institutional
event Y is an event that is brought about by the performance of another, lower
level event X, thanks to suitable counts-as rules, provided that certain enabling
conditions C hold. For example, an artificial institution may specify that a cer-

137



tain type of message sent by a suitably empowered agent A will count as an
institutional action of opening an auction. Contrastingly, basic events are events
that can be directly produced by a participant, without the need of realizing it
through the performance of another, lower level event. For example, performing
the concrete action of sending a message to another participant is represented
in the institution as a basic event of message exchange.

Therefore, transforming an observed concrete event in a form suitable for
regulation requires producing a representation of either a basic or institutional
event. In the Regulation Layer, both artificial institutions and the concrete do-
mains over which they operate are specified as OWL ontologies. Thus the in-
frastructure transforms the observed concrete event into OWL individuals that
belong to classes of events pertaining either to the institution ontologies or to the
concrete domain ontologies. More accurately, as institutional events are grounded
on basic events, this transformation process consists of: (i), creating an OWL
individual representing the basic event; and (ii), optionally creating an OWL
individual representing the institutional event, if this is required by a count-as
relationship defined in the institution in force.

Coherently with the OCeAN metamodel, we provide a set of application-
independent counts-as links between message exchanges (considered as basic
events) and the creation of suitable commitments (considered as institutional
events): these rules are part of the Commitment Institutions and specify the
application-independent component of the semantics of OCeAN-ACL. More specif-
ically, according to the OCeAN-ACL semantics, the exchange of commissive mes-
sages (like promising) and directive messages (like requesting) are interpreted in
the Commitment Institution as institutional actions that create action commit-
ments [20], that is, commitments to perform the action described in the content
part of the message. Commitments of this type can be considered as equivalent
to obligations; for example, if agent A promises to agent B to pay a given sum of
money M for a given product P, the communicative act will be interpreted as a
create-obligation institutional action, that is, an attempt to create an obligation
of agent A to pay M euros to B for product P. When the Bridging Layer deliv-
ers this institutional action to the Regulation Layer, the Interaction Ontology
will be updated with a new institutional object of type Obligation, with A as
the debtor, B as the creditor, and the payment of M euros for P as the con-
tent. Thereafter, the obligation will be monitored for its fulfillment, violation or
cancellation as part of the process of interaction monitoring carried out by the
Regulation Layer. Requests are treated in a similar way, except that they involve
one more step; more precisely, a request is interpreted as the attempt to create
an action precommitment (or preobligation), which in turn leads to an attempt
to create an obligation for the receiver, if the receiver accepts the request (i.e.,
the preobligation).

Assertive communicative acts (like informing) are conceptually different from
commissives and directives, because they introduce propositional commitments[20],
which cannot be interpreted as ordinary obligations. For example, if agent A in-
forms agent B that the product delivered is damaged, this commits A to the

138



truth of what is said (i.e., that the product is indeed damaged), but does not
obligate A to perform any predefined action. We have not yet worked out a
representation of propositional commitments for our infrastructure: this issue is
therefore deferred to future works.

Finally, there is another type of communicative acts, which following the
terminology of Searle’s Speech Act Theory [19] we call declarations; examples
are declaring that an auction is open, or that a specific agent is the winner of
an auction’s run. Declarations are carried out by exchanging suitable ACL mes-
sages, with declaration as the performative, and a content that represents the
institutional action being performed. Coherently with the OCeAN metamodel,
such messages are interpreted within an artificial institution through a counts-
as rule, which generate the declared institutional action provided that certain
conditions hold. Typically, a condition for the successful performance of a dec-
laration is that the actor of the action has the institutional power to perform
the declared institutional action (e.g., only an auctioneer can possibly open an
auction). Such institutional powers are associated at design time to the different
roles that can be played by a participant in an institution, and are checked at
runtime by the Regulation Layer.

In practice, to achieve this transformation from basic events to institutional
events, the OWL specifications of application-independent concepts (such as
agent, action, event, object, time instant, time interval, etc.) are shared be-
tween the Content Language Ontology (see Section 2), the ontologies of the
relevant institutions, and the domain ontologies over which the ongoing applica-
tion operates and on which the institutions are grounded. The sharing is achieved
thanks to the ontological architecture introduced in the Regulation Layer, which
eliminates all the ontological mapping hurdles that would have otherwise been
necessary to handle for the full transformation process to take place. Indeed it
allows to seemingly go from one representation to another; for instance, going
from the communicative action promise (A, B, pay (book1, 5 euro)) (which in-
volves the Content Language Ontology and a concrete domain ontology) to the
institutional action create-Obligation (A, B, pay (A, B, book, 5 euros), instant1)
(which involves the Commitment Institution Ontology and the same domain on-
tology) is achieved smoothly thanks to the underlying shared concepts of agent,
action, object. If these concepts were not shared appropriately, mappings would
have been necessary between the specifications of these concepts in different on-
tologies. The same principle applies, for example, when a non-communication
action of payment happens that is represented by the OWL individual Pay(A,
B, book, 5 euros, inst1), which has to be transformed into the institutional action
Acquire-Ownership(A, B, book, 5 euros, instant1) of an hypothetical Ownership
Institution (where the target representation is understood as A getting the own-
ership of book from B, for the price of 5 euros at instant1 ).

139



6 Related Work

Among the recent multiagent infrastructures focused on OISs, which in partic-
ular share the aim of providing the regulation of the participants’ interactions
in the form of a neutral third-party functionality, as part of the overall support
that they deliver, the Magentix2 Open multi-agent systems platform15[3] repre-
sents the state of the art on the matter. In particular it is the most advanced
operational infrastructure, which includes many of the recent advances in the
OIS area. We therefore provide a comparison with our infrastructure as a way
to relate our work to the state of the art in the field.

At a very abstract level the two infrastructures share the same architectural
approach. More precisely, although their respective concrete layered architec-
ture are slightly differently structured, they present the same abstract archi-
tectural organization: a top part concerned with regulation specification and
management, a bottom part concerned with the support of observable interac-
tions between heterogenous participants, and a middle part concerned with the
monitoring of the participants’ interactions according to the regulation in force
and its enforcement when deemed appropriate. Consequently, differences only
appears in the way the parts are concretely realized, with the most fundamental
of them occurring in the middle part. This reflects a common vision of the role
of the infrastructure, but divergences on how its different parts may concretely
operate to achieve it.

More specifically, at the top level, Magentix2 adopts the metamodel of vir-
tual organizations, which specifies roles with norms including platform generic
roles such as OMS (Organization Management System) and DF (Directory Fa-
cilitator), for the specification of a regulation structure. Our infrastructure also
defines a regulation structure at this level, but one that is based on the OCeAN
metamodel of artificial institutions (see Section 4). While a thorough comparison
of the two metamodels is outside the scope of this paper, it can be safely said
that both infrastructure intend to provide similar regulating structures, which
in particular are centered on non-regimented norms, to harness the participants’
activities.

At the bottom, both infrastructures provide an observable vehicle for the par-
ticipants to interact with each other. To that end, they use similar approaches,
but differ in the general understanding of interactions. Indeed the OCeAN meta-
model classifies actions into communicative and non-communicative ones, which
Magentix2 does not, in that it only considers communicative actions. Conse-
quently, while we divide the bottom part of the infrastructure into two layers
(Messaging and Core Service), with the upper one devoted to non-communicative
actions and the lower one devoted to communicative actions, Magentix2 only
provides one interaction level which corresponds to our lower layer.

As far as communicative interactions are concerned, the two infrastructures
operate in a similar manner (as they both provide an end point neutral mes-
saging protocol with a broker for interoperable communication between het-

15 http://www.gti-ia.upv.es/sma/tools/magentix2/

140



erogenous participants), but diverge in the choice of the technology. Where we
use WS (SOAP, HTTP, WSDL) with the SOAP Body structure defined as an
OCeAN-ACL message for messages exchange, Magentix2 adopts AMQP16 with
the message body structure defined as a FIPA-ACL message. We believe that
the use of WS is more widespread and therefore easier to adopt than AMQP,
which has yet to become a standard.

As previously mentioned, the sharpest differences between the infrastructures
occurs in the middle part, whose functionality can be summarized as follows: (i),
observing concrete events such as message exchanges or core-service events; (ii),
representing observed events in a form suitable for regulation; (iii), checking
them against the regulations for monitoring purposes; and (iv), enforcing the
relevant regulations when deemed appropriate. It is with (ii) and (iii) that the
two infrastructures differ substantially.

With our infrastructure, checking against regulations is done by means of
reasoning over a representation of the state of the interaction, carried out within
an OWL ontology that includes the institutions in force and the norms coming
along. Our norms and their instantiations (in terms of obligations and prohibi-
tions) are represented as OWL individuals, so that their activation, cancellation,
fulfillment and violation conditions are represented as event types (i.e., as sub-
classes of class Event). Therefore we use the full power of DL reasoning to match
the representations of concrete events with norms conditions. This process is
much more powerful than the one adopted by Magentix2, which relies on the
matching of a restricted subset of first-order logic formulas.

A further important difference between Magentix2 and our infrastructure
is that the latter does not rely on an application-independent semantics of
ACL messages. In our infrastructure, based on the OCeAN metamodel, the
application-independent part of messages (i.e., all components of an ACL mes-
sage with the exception of its content) is given a uniform semantics across appli-
cations. Moreover, such semantics allows for a representation of messages (pro-
duced by the Bridging Layer) that immediately relates message exchanges to the
Regulation Layer. This means that only application-dependent non-communicative
events will need to receive a special treatment in different applications of the
infrastructure. Conversely, Magentix2 does not provide for any application in-
dependent connection between the participants’ actions and regulation, thus
making the conversion to different application more expensive and error-prone.

7 Conclusions

In this paper we have presented an infrastructure for Open Interaction Systems,
based on the OCeAN metamodel and currently under implementation. Our main
concerns in the development of the infrastructure are, on the one hand, to guar-
antee openness and interoperability, and, on the other hand, to rely as much
as possible on technologies that are sufficiently mature and stable, like Service
Oriented and Semantic Web technologies, to facilitate adoption by the industry.

16 http://www.amqp.org/

141



The infrastructure has been divided into components to separate different
concerns, which brings several advantages: on the one side, it enables us to dis-
tribute the infrastructure and to use techniques of dynamic adaptation (such as
cloning and self-deletion) to manage overhead issues; on the other side it enables
us to provide targeted upgrades and developments of the infrastructure. So far,
for prototyping purposes the infrastructure is being implemented as a mono-
lithic multi-threaded Java application. Nevertheless, the different components
are present and well separated so that they can be easily extracted to provide a
fully distributed infrastructure.

In the near future we intend to complete the implementation and test of the
prototype. In particular we plan to complete the formalization in OWL of the
semantics of the various type of communicative acts, to separate the various
component of the prototype and to test it with the formalization and execution
of an e-marketplace, inclusive of the OWL ontologies representing the relevant
institutions and domain knowledge.

References

1. N. Balani and R. Hathi. Apache CXF Web Service Development. Packt Publishing,
2009.

2. L. Chiarabini. CORBA vs. Web Services. http://www.itu.dk/~oladjones/

mastersthesis/materialsfromportals/corbaversuswebservices.pdf, May
2004. (accessed March 14, 2013).

3. N. Criado, E. Argente, P. Noriega, and V. Botti. MaNEA: A Distributed Archi-
tecture for Enforcing Norms in Open MAS. Engineering Applications of Artificial
Intelligence, 26(1):76–95, 2012.

4. T. Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice Hall, Aug. 2005.

5. T. Erl. SOA Principles of Service Design (The Prentice Hall Service-Oriented
Computing Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2007.

6. N. Fornara. Specifying and Monitoring Obligations in Open Multiagent Systems
Using Semantic Web Technology. In A. Elçi, M. Koné, and M. Orgun, editors,
Semantic Agent Systems, volume 344 of Studies in Computational Intelligence,
pages 25–45. Springer Berlin / Heidelberg, 2011.

7. N. Fornara and M. Colombetti. Specifying Artificial Institutions in the Event
Calculus. In V. Dignum, editor, Handbook of Research on Multi-Agent Systems:
Semantics and Dynamics of Organizational Models, Information Science Reference,
chapter XIV, pages 335–366. IGI Global, 2009.

8. N. Fornara and M. Colombetti. Representation and monitoring of commitments
and norms using OWL. AI Communications - European Workshop on Multi-Agent
Systems (EUMAS) 2009, 23(4):341–356, 2010.

9. N. Fornara, D. Okouya, and M. Colombetti. A Framework of Open Interactions
based on Web Services and Semantic Web Technologies. In Proceedings of the 9th
European Workshop on Multi-Agent Systems EUMAS 2011, 2011.

10. N. Fornara, D. Okouya, and M. Colombetti. Using OWL 2 DL for expressing ACL
Content and Semantics. In M. Cossentino, M. Kaisers, K. Tuyls, and G. Weiss,
editors, EUMAS 2011 Selected and Revised papers, volume 7541 of LNCS, pages
97–113, Berlin, Heidelberg, 2012. Springer-Verlag.

142



11. N. Fornara, F. Viganò, and M. Colombetti. Agent communication and artificial
institutions. Autonomous Agents and Multi-Agent Systems, 14(2):121–142, 2007.

12. N. Fornara, F. Viganò, M. Verdicchio, and M. Colombetti. Artificial institutions:
a model of institutional reality for open multiagent systems. Artif. Intell. Law,
16(1):89–105, Mar. 2008.

13. M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. Java Message Service
Specification Version 1.1. Sun Microsystems, Inc., April 2002.

14. P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Technolo-
gies. Chapman & Hall/CRC, 2009.

15. T. K. Kent. Developing Web Services with Apache CXF and Axis2. Lulu.com, 3rd
edition, 2010.

16. M. J. O’Connor and A. K. Das. A Method for Representing and Querying Tempo-
ral Information in OWL. In A. Fred, J. Filipe, and H. Gamboa, editors, Biomedical
Engineering Systems and Technologies, volume 127 of Communications in Com-
puter and Information Science, pages 97–110. Springer Berlin Heidelberg, 2011.

17. OMG. The Common Object Request Broker: Architecture and Specification. The
Object Management Group, pages 1–712, Nov. 1999.

18. C. Scordino. How Web Services relate to the well established CORBA Middleware.
http://retis.sssup.it/~scordino/documents/corba.pdf, April 2004. (accessed
March 14, 2013).

19. J. R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge, United Kingdom, 1969.

20. D. N. Walton and E. C. Krabbe. Commitment in Dialogue: Basic concept of
interpersonal reasoning. State University of New York Press, Albany NY, 1995.

21. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2005.

143


